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Abstract : 
 

The passive scalars in the decaying compressible turbulence with the initial Reynolds number 
(defined by Taylor scale and RMS velocity) Re=72, the initial turbulent Mach numbers (defined by 
RMS velocity and mean sound speed)[2,3] Mt=0.2-0.9, and the Schmidt numbers of passive scalar 
Sc=2-10 are numerically simulated by using a 7th order upwind difference scheme and 8th order group 
velocity control scheme. The computed results are validated with different numerical methods and 
different mesh sizes. The Batchelor scaling with 1−k range is found in scalar spectra. The passive 
scalar spectra decay faster with increasing the turbulent Mach number. The sheet-like structures of the 
passive scalar gradient are also founded. The extended self-similarity (ESS) is found in the passive 
scalar of compressible turbulence. 
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1. Introduction 

Direct Numerical Simulation (DNS) becomes an important tool in recent research of turbulence. 
DNS of compressible turbulence is more difficult than that of the incompressible turbulence. When the 
turbulent Mach number is greater than 0.3 the shocklets may appear in the compressible turbulent flow 
fields. The reason and mechanism of shocklets existence is not clear yet. The turbulent Mach number 
in DNS can not be very high with the present existing numerical methods and computer resource. For 
the problem of compressible isotropic turbulence with the initial Reynolds number Re= 72 (based on 
Taylor scale and RMS velocity), as the initial turbulent Mach number is less than 0.5, the tenth order 
accurate symmetrical compact difference method in Ref [2] can work, but as the turbulent Mach 
number is greater than 0.5, this method is not valid. 

The same problems but with much higher turbulent Mach numbers Mt=0.7 and 0.95 are solved by 
authors of this paper with high-order upwind difference scheme and GVC8 scheme[3,4].   

There are many problems related with the scalar flux in turbulence, such as the pollutant density 
in the air, chemical or biological species concentration and salinity in the ocean, et al. Since 1990s, 
many works with DNS have been done in studying the passive scalars of turbulent flow. In recent 
years some results of DNS for passive scalars with relative high Schmidt number (Sc > 1) are reported 
[5-8]. All those DNS results of passive scalars are for the incompressible turbulent flows, but the scalars 
in compressible turbulent flows is more interested in aeronautics and astronautics, for example, the 
mixing of fuel and air in supersonic ramjet is a typical problem of scalars in compressible turbulent 
flow.  

 In this paper the passive scalars in decaying compressible turbulence are solved with direct 
numerical simulation by using 7th order accuracy upwind difference scheme and 8th order accuracy 
group velocity control (GVC8) scheme. The start Reynolds number Re= 72, the turbulent Mach 
numbers Ma=0.2-0.9, and the Schmidt numbers of passive scalars Sc=2-10 are used in computation. In 
order to validate the computed results, the numerical experiments are made with different simulation 
methods but with same fluid parameters. In order to check if the small structures we are interested in 
are captured, the same problems are solved with mesh doubling. Numerical experiments show that the 
results given in this paper are reliable. The Batchelor 1−k range in scalar spectrum is found in our 
simulations. The effect of compressibility on the flow structures is discussed. The results show that the 
high wave number spectrum decays faster with increasing the turbulent Mach number. From our 
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computed results it is found that in the compressible turbulence there is also the extended self-
similarity (ESS) for the passive scalars.  

The methods used in the computation are presented in section 2, the validation of results is given 
in section 3, and the computed results are analyzed in section 4. 

 
2 Numerical method 

The compressible Navier-Stocks equations are written in the vector form as follows 
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and the transport equation for the passive scalar expressed as 
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where Tewvu ],,,,[ ρρρρ=U ， vGFEGFE ,,,,, vv are the convection terms and the viscous terms[9], 
respectively. The viscosity coefficient µ  is obtained from the Sutherland equation, g is the passive 
function, and Sc is the Schmidt number. 

Periodic boundary conditions and uniform meshes are used in x-, y- and z- directions. The initial 
conditions of the velocity components, the pressure and the temperature are given as in Ref. [3], and 
the initial condition for the passive scalar is given in the same way as that of u component of the 
velocity vector. 

The viscous terms of the Navier-Stokes equations are discretized with 8th order center difference. 
The flux vector splitting is adopted for the convection terms. The 7th order accurate upwind difference 
approximation in Ref.[3] and the GVC8 in Ref.[4] are used to discretized the convection terms.  

Consider the approximation for the first derivative in the convection terms 
1/ 2 1/ 2( ) /j j ju F F+ −′ = − ∆       

For the positive flux the following backward difference approximation is used 
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The coefficients )1(
kb  and )2(

kb  are given in the following table. 
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For the negative flux the following forward difference approximation is used:  
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The difference approximation for the passive scalar is the same as that for the Navier-Stokes 
equations. To save computing resource the Reynolds number in computation is not very high, and the 
grid number for the passive scalar is doubled in each direction comparing with the grid number for 
other flow parameters. 8th order Langrage interpolation is used to transport the value of coarse mesh to 
the fine mesh. 

The parameters used in the DNS cases are shown in the following table  
 

Table 2. Computing parameters of each DNS cases 
CASE λRe  Mt  Sc Numerical 

Method  
Grid number for 
fluid 

Grid number for 
passive scalar 

D1 72 0.2 5 UD7 256×256×256 512×512×512 
D2 72 0.5 5 UD7 256×256×256 512×512×512 
D3 72 0.7 5 UD7 256×256×256 512×512×512 
D4 72 0.9 5 GVC8 256×256×256 512×512×512 
E1 72 0.5 2 UD7 256×256×256 512×512×512 
E2 72 0.5 10 UD7 256×256×256 512×512×512 
E1T 72 0.5 2 UD7 128×128×128 256×512×512 
D2Ta 72 0.5 5 UD7 128×128×128 256×256×256 
D2Tb 72 0.5 5 GVC8 256×256×256 512×512×512 
 
In Table 2 λRe is the initial Reynolds number, Mt  is the initial turbulent Mach number, and Sc is the 

Schmidt number. UD7 in Table 2 denotes 7th order upwind difference method [3] and GVC8 denotes 8th 
order group velocity control scheme.  

The initial Reynolds number equal to 72 for all cases in computation, the Schmidt number is in 
the range 2-10, and the initial turbulent Mach number is in the range 0.2-0.9. The flow parameters for 
the case E1T in Table 2 are the same as for the case E1, and the parameters for D2Ta, D2Tb are the 
same as for D2. These three cases E1T, D2Ta and D2Tb are used to validate numerical results. 

Programs are coded by using MPI Fortran 77, and the DNS results are computed with the LSSC2 
computer of LSEC (State Key Laboratory of Scientific and Engineering Computing). Averaged 
performance are: 11 seconds/time-step for case E1T and D2Ta (8 CPUs in 8 nodes), 18.6 
seconds/time-step for cases D1-D3 and E1-E2 (64 CPUs in 32 nodes), 20.5 seconds/time-step for case 
D4 and D2Tb (64 CPUs in 32 nodes). 

 
3. Validation of computed results 
3.1 The flow parameters  
   All the flow parameters obtained from numerical simulations have been validated by the authors in 
papers  [3-4].   

 In Fig.1 is shown the time history of normalized average kinetic energy 0/)( KtK  and velocity 

derivative skewness for Case D2. Horizontal ordinate in Fig.1 denotes the normalized time τ/t . 

Where 2/7
0

4/1)2(32 −= k
A

πτ  is the large-eddy-turnover time at t=0 [2]. The symbols in this figure are 

the results given in Ref.[2] by using 10th order accurate Pade schemes with the same computing 
parameters, including the initial Reynolds number and initial turbulent Mach number, as these in Case 
D2. Fig.1 shows that the results of this paper agree well with the results of Ref. [2], and this validated 
our results of flow fields. 

The numerical experiments for the case with Reynolds number λRe =72 show that the grid 
number 128×128×128 is enough for obtaining the accurate results. In this paper, the gird systems 128
×128×128 and 256×256×256 are used for simulating the flow field parameters. 
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Figure 1. Time history of normalized kinetic energy and 
velocity derivative skewness for case D2 and the results of 
Samtaney et al. 

0 1 2 3 4

0.2

0.4

0.6

0.8

1

256*256*256
128*128*128

Figure 2. Time history of RMS passive scalars for case E1 
(512*512*512) and E1T (256*256*256) 

 
3.2 The passive scalars  

We will compare the statistics of passive scalars in each DNS cases by using different numerical 
methods and with different grid sizes. Numerical experiments show that the statistics is not sensitive 
with different numerical methods or grid size if the grid number is large enough (more than or equal to 
128×128×128). This means that the small structures we are interested in are captured. 

Figure 2 shows the time history of RMS passive scalars for Case E1 and E1T. The computing 
parameters and numerical method are the same for these two cases, but the grid number are 512×512
×512 and 256×256×256 for these two case respectively. The RMS of passive scalar is defined 

as: )0(/)()( rmsrmsg gtgtR = , ><= 2ggrms . From fig.2 we can see that the two results agree 

well with each other. In Fig. 3 is shown the time history of RMS passive scalar for case D2 and D2Ta, 
from which we also can see that grid size is small enough for simulating physical phenomena we are 
interested in. This experiment tells us that the error due to grid size is negligible.  

  Fig.4 shows the time history of RMS passive scalar for case D2 and D2Tb. The flow parameters 
and the grid numbers in computation for these two cases are the same, but the numerical methods are 
different. The 7th order upwind difference scheme is used for the case D2, and GVC8 scheme is used 
for the case D2Tb. From this figure we can see that the results of these two cases agree well with each 
other. This numerical experiment also validate our numerical results. 

As it is known that the grid number in each direction needs to be the magnitude of 4/3Pe where 
ScRePe ×=  is the Pe number. We can infer that the grid number for the case D4 is enough because 

the Pe number for case D4 is the same as for the case D1-D3. We can also infer that the grid number 
for E2 is sufficient because the grid number for E2 is doubled comparing with the case D2Ta in each 
direction. This grid number is more than the needed. 
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Figure 3. Time history of RMS passive scalar for case D2 
(512*512*512) and D2Ta (256*256*256) 
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Figure 4. Time history of RMS passive scalar for case D2 
(GVC8 scheme) and D2Tb (7th order upwind difference 
scheme) 
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4.  Analysis of Numerical Results 
We will study the flow field and passive scalar field for each DNS case at 1/ =τt . The 

parameters of these fields are showed in the following table. Turbulence after 8.0/ =τt may be 
considered realistic [2,3]. The results obtained at 1/ =τt  are analyzed.  

 
Table 3. The parameters of the flows and passive scalar fields 

Field 
Number 

DNS 
CASE 

τ/t  λRe Mt  Sc uS  ugS  

FD1 D1 1.0 39.4 0.17 5 -0.44 -0.63 
FD2 D2 1.0 38.5 0.42 5 -0.40 -0.63 
FD3 D3 1.0 36.3 0.42 5 -0.42 -0.51 
FD4 D4 1.0 33.4 0.72 5 -0.69 -0.57 
FE1 E1 1.0 38.5 0.42 2 -0.40 -0.64 
FE2 E2 1.0 38.5 0.42 10 -0.40 -0.62 
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4.1 Spectral analysis of passive scalar 
     Batchelor (1959) found that there is 1−k  range in the energy spectrum of passive scalar when the 
Schmidt number is much large than 1. In later researches it was found that “ 1−k  range” in the 
spectrum exists only when the Schmidt number large than 1 (need not much large than 1). But in some 
experiments “ 1−k  range” for the passive scalar spectrum has not been found yet [6]. In all these 
research works the passive scalars are discussed only for the incompressible turbulence, and the 
effects of compressibility on passive scalars are still unknown. 

The energy spectrum of passive scalar is defined as: 
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Figure 5. Energy spectrum of passive scalar for FD1-FD4 
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Figure 6. Energy spectrum of passive scalar for FE1, FD2 
and FE2 

 
Fig.5 shows the energy spectrum of passive scalar gE  for FD1-FD4 (scalar fields at 1/ =τt  of 

cases D1-D4). We can find that the spectrum decays faster in the range of high wave number with 
turbulent Mach number increasing. This is because that more kinetic energy will be dissipated by 
shocklets with turbulent Mach number increasing. 

Fig.6 shows the energy spectrums of passive scalars for the cases FE1, FD2 and FE2. The 
Schmidt number for these three cases is 2, 5 and 10 respectively. This figure shows that the energy 
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spectrum of passive scalar decays slower with the increasing Schmidt number. The amplitude of the 
highest wave number of the spectrum is about 810−  which shows the sufficient accuracy of our 
simulations. 

Fig.7 shows the normalized energy spectrum of passive scalars for cases FE1 FD2 and FE2. The 
horizontal ordinate is Bkη  and the vertical ordinate is ))/(/()( 2/1

BgB Ek ηευχη  where Bη  is 
Batcher scale, ε  and χ  is the dissipate rate of kinetic and passive scalar respectively. The normalized 

energy spectrum ))/(/()( 2/1
BgB Ek ηενχη  remains unchanging in a relative long interval. This 

result means that exists relation 1~ −kEg  in this interval, and this Batchelor 1−k  spectral is universal 
for all these cases considered. 
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Figure 7. Normalized energy spectrum of passive scalar of 
FE1, FD2 and FE2. 

 

 
4.2 Coherent structure of passive scalar in compressible isotropic turbulence 
      The sheet-like structures in passive scalar in incompressible turbulence are reports in some recent 
research works, but there still no reports  about coherent structures of passive scalar in compressible 
turbulence. 
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Figure 8 and Figure 9 shows the isosurface of 2=θ for FD2 and FD4, respectively. The 
visualizing domain is the 1/64 of the full computing domain. The two figures show the sheet structure 
of passive scalar in compressible turbulence. 
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Figure 9. Isosurface of normalized scalar gradient of 
FD4 
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4.3 Scaling analysis of passive scalar in compressible isotropic turbulence 
Scaling law is a hot topic in turbulence physics in recent years. Extended self-similarity (ESS) is 

one of the important developments in measurement of the scaling exponents. She et al developed S-L 
model of scaling law, which has been tested by several experiments and numerical dates. The scaling 
law of the passive scalar in turbulent flow has been reported in recent years. Zhou et al[8] studied the 
scaling law of passive scalar for the incompressible isotropic turbulence. But there is still no report for 
scaling law of passive scalar for the compressible turbulence. 

Fig. 10 are given the plots of p-th order passive scalar structure functions as function of 3rd order 
passive scalar structure function for the case FD2. The horizontal ordinate is >< 3||log lgδ , and the 

vertical ordinate is >< p
lg ||log δ  where )()( xglxggl −+=δ , and ⋅  denotes the average over 

the all field. From the plot we can see clearly the linear variation, which means that the power laws 
between p-th order passive scalar structure function and 3rd order passive scalar structure function. 
This means ESS (Extended Self-Similarity) holds in the compressible passive scalar turbulence.  

Fig.11 and Fig.12 are shown the same plots for the passive scalar field for the case FD4 and FE2, 
respectively. From these two figures we can obtain the same conclusion as that in figure 10.  The rates 
of slope in the plots in fig. 10-12 are the relative scalar exponent pζ , and the least square approximate 
method is used to calculate these slope rates. 
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Figure 10. Plots of p-th order passive structure functions as 
functions of 3rd passive structure in FD2 
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Figure 11. Plots of p-th order passive structure functions 
as functions of 3rd passive structure in FD4 

 
Fig. 13 shows the relative scaling exponents for the cases FD1-FD4. The dash line denotes p/3 

law. The exponents lower than p/3 denote the strong intermittence of the passive scalar field. This 
figure indicates that the compressibility has little effect on passive scalar’s scaling exponents, for 
example, the largest difference of 6ζ  is not more than 4% and the largest difference of 7ζ  is not more 
than 5% among the four cases. 

Fig.14 shows the relative scaling exponents for FE1, FD1 and FE2 with Schmidt numbers 2, 5 
and 10 respectively. This figure shows scaling exponent become smaller with increasing Schmidt 
number. It means that the passive scalar become more intermittent with the increasing Schmidt 
number. 
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Figure 12. Plots of p-th order passive structure functions as functions of 3rd passive structure in FE2 
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Figure 13. Relative scaling exponents of passive scalar for 
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5. Conclusion 
1. There is clear Batchelor 1−k  range in the energy spectrum of passive scalar in the compressible 

turbulent flow, and the compressibility effect leads to faster decay of energy spectrum of passive 
scalar in high wave number ranges.   

2. The sheet-like structures of the passive scalar gradient are founded in compressible isotropic 
turbulence. 

3. The ESS holds in the passive scalar of compressible turbulence, and the compressibility has 
little effects on the relative scalar exponents of passive scalar. 

4. The exponents of passive scalar became more intermittent with Schmidt number increasing. 
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